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alumina of c = 9.8 and height h = 0.635 mm. Figs. 7 and 8 show

the results of calculations compared with the results of measure-

ments taken by Gronau and Wolff at the University of Duisburg

[9]. In this example we took values of L(w) and C(w) for ~ = O

GHz and ~ =15 GHz (Figs. 7 and 8).

Very good agreement between the measurements and calcula-

tions was also obtained for many other T junctions of different

shapes, which are not presented here.

Example 3

We consider a microstrip low-pass filter which has been

measured and analyzed by a three-dimensional FDTD method

by the authors of [12]. The substrate has e, = 2.2 and h = 0.794
mm. In Figs. 9, and 10 we compare the results published in [12]

with those obtained using our 2-D inhomogeneous model. Good

agreement again is obtained. Certain discrepancies at high fre-

quencies are most probably due to radiation. Our analysis took

about 7 min on a PC-386 working under DOS while the 3-D

analysis [12] of the same example was reported to take 8 h on a

VAX station 3500.

III. CONCLUS1ONS

The paper has presented a new two-dimensional model for

the analysis of arbitrarily shaped microstrip circuits. The model

was checked in the FDTD program prepared by the authors to

run on a PC. It was found very useful for investigating new

designs of junctions, resonators, and patch couplers. However, it

must be admitted that the model is effective only in cases where

phenomena that are typically three-dimensional, such as radia-

tion and coupling, can be neglected.
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Accurate Formulas for Efficient Calculation of the

Characteristic Impedance of Microstrip Line

K. K. M. Cheng and J. K. A. Everard

Abstract —A numerically eff]cient and accurate method for the deriva-

tion of the characteristic impedance of an open microstrip line assuming

the quasi-TEM mode of propagation is presented. It is based on the
spectral-domain method incorporating functions of rectangular shape

for describing the surface charge density distribution on the conductor

strip. This gives rise to integrals which can be analytically evaluated.
Tbe formnlas thus obtained can readily be implemented on a desktop

computer. It is fonnd that the discrepancies between the results derived
from the proposed method ( N = 3) and from tbe snbstrip method are
less than 0.2670 throngh a wide range of w\ h ratios and relative

permittivity valnes.

I. INTRODUCTION

A vast amount of literature [1]–[7], [9]-[11] has been pub-

lished on the numerical computation of the characteristic

impedance of microstrip. Wheeler employed an approximate

conformal mapping method in the study of microstrip in a mixed

dielectric media [21. Silvester and Farrar [31, [4] treated this
problem by the method of moments and dielectric Green’s
function. Poh et al. [5] applied the spectral-domain method to

the analysis of microstrip and showed that by careful treatment

of the edge singularities of the charge density on the strip, the

method can often give rise to accurate results with only a few

basis functions. In this paper, a new method based on the

spectral-domain approach is presented for determining the char-

acteristic impedance of an open microstrip line. By selecting the

rectangular shaped functions as the basis functions, the resulting

integrals in the solution can be efficiently evaluated. Further-

more, the number of basis functions required is minimized by

searching for the optimum widths of these rectangular shaped

functions, which will give the least calculated impedance error.

The proposed method is therefore numerically efficient, easy to

implement, and highly accurate. For purposes of comparison,

results calculated by the substrip method and by our formulas

are shown, The extension of this method to the modeling of

microstrip with thick strip conductor and covered microstrip is

discussed.

11. METHOD OF ANALYSIS

The study of microstrip is carried out under the assumptions

that the mode of propagation is quasi-TEM and the line has

negligible loss. In this case the characteristic impedance, 2., of

a microstrip line is given by

1
zo=—

1’~
(1)

where L! is the velocity of light in vacuum, C is the capacitance

per unit length of the microstrip shown in Fig. 1, and CO is the
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Fig. 1. Cross section of a microstrip line.

capacitance per unit length for the same structure but with

c, = 1. The thickness of the strip is assumed to be zero. For

convenience, the potentials of the conductor strip and the

ground plane are assumed to be 1 V and O V, respectively.

The static potential function r#(x, y) of the microstrip satisfies

Poisson’s equation:

p(x)
v2$b(x, y)=— —

E
(2)

and the boundary’ conditions on the surface of the dielectric

material as well as the conductor. Here p(x) represents the

charge density distribution on the surface of the metal strip.

Now we define the Fourier transform as

ij(a,y)=/m @(x, y)e’axdx.
—m

(3)

Taking into account the boundary and continuity conditions, the

transformed potential function evaluated at the air–substrate

interface (y = h) can be shown [5], [9] to be

G(cr)~(a)=~(a, h) (4)

1

‘(a)=colal{l +~rcoth(lalh)}
(5)

1 _ e–zlalh

.

●0(1+~, )lal(l —ke–21al;1)
(6)

and

1–E,
k=—

1+6, ”
(7)

For the infinitely thin strip case, it is well known that both the

charge density and the electric field are singular at the edges of

such a strip [11]. Of the published methods for finding the

charge density distribution, the substrip approximations [3], [4]

can be expected to give reasonably good results with sufficiently

small subsections. However, this method demands large amounts

of computer time and memory A number of different smooth

fitting functions [5]–[7] have been used to approximate these

singularities, and these greatly improve the rate and accuracy of

computing ZO. Gladwell and Coen [7] used special functions

based on the Chebyshev polynomials in approximating the charge

distribution on the strip. However, the numerical quadrature

involved in the solutions are far too complicated to use.

Charge density
distribution

x

// /\ -

sNyJ s !!-? S2!4 !!
2

N-1
2 22

Fig. 2. Charge density distribution model,

III. THE NEW CHARGEDENSrIY MODEL

It is assumed that the surface charge density on the conductor

strip is represented by the distribution model shown in Fig. 2. It

consists of N rectangular shaped functions, or, in mathematical

form,

P(x) = : w,.(x) (8)
~=1

(
Snw

f,Jx)= 1, IXI<T

O, otherwise

(9)

where KI, KZ, ” ~“, K~ are unknowns yet to be determined. Note

that W is the strip width and O<SN <s~_j < . “ “ <s2 <s, ==1.

The optimum values of the parameters S2, S3,. . .,s~ will be

discussed later, Since the potential on the conductor stcip is

assumed to be 1. V, the line capacitance of the microstrip is

N

C = W ~ Knsn = WKTS (“10)
~=1

where K=[KI Kz . . . K~]T and S=[sl Sz . . . s~] ‘. If we take

the Fourier transform of (8), substitute it into (4), and apply

Galerkin’s method together with Parseval’s theorem, we obtain

‘u=yws. (11)

Here A is a symmetrical square matrix of dimension N. The

elements of the matrix, Aij (i = 1,. ... N, j = 1,. ... N) are given

by

At, = ~“G(a)
Sin(++wda,12)

a’

Note that the above integral may be evaluated analytically as
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TABLE I

COMPARISON OF THE PROPOSED FORMULAS AND SUBSTRIP METHOD FOR DIFFERENT c, AND w/h IN THE CHARACTERISTIC IMPEDANCE CALCULATIONS

\

‘=? 6.0 9.6 13.0 28.0

w,/h PM 55 PM 55 PM Ss PM Ss

0.1
0.2
0.4
0.7
1.0
2.0
4.0

10.0

134.78 134.63 1

112.58 112.43
90.482 90.325

72.892 72.741

61.987 61.845

42.376 42.267

26.503 26.438

12.745 12717

L09.06

91.020
73.054
58,761

49.904

34.001
21.183

10.140

108.94
90.891
72.927

58.638
49.789

33.913
21.131

10.118

94.718
79.015
63.381

50.943
43.238

29.415

18.292

8.7392

94.605
78.902
63.270

50.837
43.139

29.338

18.247

8.7197

65.612
54.699
43.835
35.194

29.843
20.249

12.555

5.9808

65.534
54.622
43.759

35.120
29.773
20.200

12.528

5.9678

PM—proposed method. SS—substrip method.

follows:

At, =jo ●o(l+=, )(1_ ke_2ah ‘ - ‘ . ‘ - ‘ da
)

——
~0(li6r)~m(1-e-2”’’)(l+

.sin(a:)sin(a~)da
a’

A,, =
@:E,)@ @’)

‘in(a%in(a%)da

a’

.S’”(+%”(f+da+...,
a’

Each integral in the above expression can be explicitly obtained

using the closed-form formulas [8] given in the Appendix.

Therefore the coefficients A,j can be rewritten as

+k{I(2p’, sl,sj)–z(p’, s,,sJ)}+ . ..]

W2——
4EO(1+ E,) (

(1-k) ~ k“z((n+l)pf,s L,.r,)
~=11

–I(o, si,s,)
}

(13)

and p’ = 4h / W. Hence, the line capacitance is given by

C=, O(l+,,)TNS (14)

where the unknown vector D = [dl dz . . dN]T is determined by

the following equation:

D= B-lS. (15]

The elements of the matrix B, B,,, are calculated by the formula

.
B,, =(l–k) ~ kY((n+l)p’, SL,S,)- I(O,,St, S,). (16)

~=o

IV. DISCUSSION

A computer program has been developed for the evaluation

of the line capacitance of microstrip based on (14)–(16). The

characteristic impedance is then obtained from expression (1).

The computed impedance values for the microstrip with differ-

ent dielectric constants and w/h ratios are shown in Table I. It

should be noted that only three rectangular shaped functions

have been employed in these calculations. The computer time

taken is, of course, greatly dependent upon the number of terms

to be retained in the infinite series, and hence on the value of k

and the w/h ratios. For k corresponding to relative permittivi-

ties in the range 6–28 and 0.1< w/h <10, 30 to 120 terms have

been found necessary to ensure less than 0.01% change in

capacitance upon doubling the number of terms in the series.

For purposes of comparison, the results for the same trans-

mission line calculated by the substrip method [3], [4] are also

included in the table. The standard substrip method can be

divided into two parts. The first is the formulation of a suitable

Green’s function, the second is the solution of the integral

equation by writing it in the form of matrix equation and

carrying out the matrix inversion numerically. For the substrip

method used here the center conductor is divided into 720

subsections. This number is chosen by increasing the number of

subsections until the resulting capacitance does not vary by

more than 0,01 ‘%.
It is quite easy to see that the proposed method (iV = 3) yields

calculated impedance values with maximum error of about

0.26%. The optimum values of Sz and Sj used in these calcula-

tions are found by computer searching through all the possible

values of S2 and S3. The goal is to minimize the calculated

impedance error with respect to the results obtained by the

substrip method given in Table I. The optimum values of Sz and

S3 are found to be 0.985 and 0.812 respectively. It should be

noted that in this case there are only six summations to be

evaluated; therefore substantial reductions in the computational

storage and time requirements are obtained with these formu-

las. Clearly, it is possible to achieve higher accuracy in the

computed impedance values by increasing the number of basis
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Fig. 3. Covered microstrip line

functions in (8). For example, we observed that with

maximum impedance error can be reduced to about

T
{b

t

ih

N =10 the
0.06%.

V. CONDUCTOR STRIP OF FINITE THICKNESS

The previous analysis of microstrip is based on the assump-

tion that the strip is of zero thickness. The above formulas may

be modified to include the effect of finite strip thickness, say t.
Consider two layers of charge situated at y = h and y = h + t.

Using the same approximations adopted by Yamashita and

Mittra [9], the modified expression for G(a) is

l+e–lalt ~ _ ~-?lalll

G(a) = ~

‘O(l+~r)la l(l–ke–21alh) “
(17)

The new formula for Bij can be shown to be

(
.

B,j=: (1–k) ~ k“l((rz +l)p’, s,, s,)-l(O, sl, s,)
~=o

VI. COVERED MICROSTRIP

The cross section of a covered microstrip line is shown in Fig.

3. It consists of a conducting strip of zero thickness placed on a

dielectric substrate between two parallel ground planes. As b

approaches infinity, the open microstrip is obtained. If we

consider the solution of the microstrip problem in the quasi-TEM

conditions, the function G(a) can be shown [101 as follows:

1
G(a) = (19)

●olal{coth(lalb) +~rcoth(lcdh)}
, 02

—e
–2[(n1+n3+ l)b+(nz+r13)h]l~l+e

_ e–2[(n, +nq)b+(nl+n?+ l)lzllal
}

where

Cn= ‘! (–l)’’’k+n+,’,
n1!n2!n3!

Note that the summation in (20) is

rz=n1+n2+r’s3,

to be performed for all

combinations of (nl, nz, n~) that give n = 0,1,2,.0 “ (e.g. for
n = 2 there are six combinations of 7Z1,n z, n s). Using expression
(20), the formulas for the computation of the characteristic

impedance of a covered microstrip line can be derived easily

based on the procedures described in the previous sections.

VII. CONCLUSIONS

A new methc)d for the computation of the characters tic

impedance of microstrip has been presented. It has been shown

that it is possible to calculate the value of 20 to a remarkably

close approximation using the formulas derived.

APPENDIX

f(,-e-p.)e-jl.x sin(ax)sin(bx)~

=I((n+l)p, a, b)– I(rzp, a,b) (Al)

l’(p, a, b)=~tan-l

(:)+:’an-’(:)

–~ln(Ps)+~ln(PA) (A2)

where

Pl=pz+(a+b)(a–b)

~2=p2 -(a+ b)(a-b)

p3=p2+(a+b)2

p4=p2+(a–b)2

p5 = pz -(a+ b)’

p6 = P2 -(a-b)2.
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