1658

alumina of € = 9.8 and height /# = 0.635 mm. Figs. 7 and 8 show
the results of calculations compared with the results of measure-
ments taken by Gronau and Wolff at the University of Duisburg
[9]. In this example we took values of L(w) and C(w) for f=0
GHz and f =15 GHz (Figs. 7 and 8).

Very good agreement between the measurements and calcula-
tions was also obtained for many other T junctions of different
shapes, which are not presented here.

Example 3

We consider a microstrip low-pass filter which has been
measured and analyzed by a three-dimensional FDTD method
by the authors of [12]. The substrate has e, = 2.2 and & = 0.794
mm. In Figs. 9. and 10 we compare the results published in [12]
with those obtained using our 2-D inhomogeneous model. Good
agreement again is obtained. Certain discrepancies at high fre-
quencies are most probably due to radiation. Qur analysis took
about 7 min on a PC-386 working under DOS while the 3-D
analysis [12] of the same example was reported to take 8 h on a
VAX station 3500.

IT1. ConcLusioNs

The paper has presented a new two-dimensional model for
the analysis of arbitrarily shaped microstrip circuits. The model
was checked in the FDTD program prepared by the authors to
run on a PC. It was found very useful for investigating new
designs of junctions, resonators, and patch couplers. However, it
must be admitted that the model is effective only in cases where
phenomena that are typically three-dimensional, such as radia-
tion and coupling, can be neglected.
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Accurate Formulas for Efficient Calculation of the
Characteristic Impedance of Microstrip Line

K. K. M. Cheng and J. K. A. Everard

Abstract —A numerically efficient and accurate method for the deriva-
tion of the characteristic impedance of an open microstrip line assuming
the quasi-TEM meode of propagation is presented. It is based on the
spectral-domain method incorporating functions of rectangular shape
for describing the surface charge density distribution on the conductor
strip. This gives rise to integrals which can be analytically evaluated.
The formulas thus obtained can readily be implemented on a desktop
computer. It is found that the discrepancies between the results derived
from the proposed method (N =3) and from the substrip method are
less than 0.26% through a wide range of w// ratios and relative
permittivity values.

I. InTRODUCTION

A vast amount of literature [1]-[7], [9]-[11] has been pub-
lished on the numerical computation of the characteristic
impedance of microstrip. Wheeler employed an approximate
conformal mapping method in the study of microstrip in a mixed
dielectric media [2]. Silvester and Farrar [3], [4] treated this
problem by the method of moments and dielectric Green’s
function. Poh et al. [5] applied the spectral-domain method to
the analysis of microstrip and showed that by careful treatment
of the edge singularities of the charge density on the strip, the
method can often give rise to accurate results with only a few
basis functions. In this paper. a new method based on the
spectral-domain approach is presented for determining the char-
acteristic impedance of an open microstrip line. By selecting the
rectangular shaped functions as the basis functions, the resulting
integrals in the solution can be efficiently evaluated. Further-
more, the number of basis functions required is minimized by
searching for the optimum widths of these rectangular shaped
functions, which will give the least calculated impedance error.
The proposed method is therefore numerically efficient, easy to
implement, and highly accurate. For purposes of comparison,
results calculated by the substrip method and by our formulas
are shown., The extension of this method to the modeling of
microstrip with thick strip conductor and covered microstrip is
discussed.

II. METHOD OF ANALYSIS

The study of microstrip is carried out under the assumptions
that the mode of propagation is quasi-TEM and the line has
negligible loss. In this case the characteristic impedance, Z,, of
a microstrip line is given by

1
) A 1
°T u/cc, @

where v is the velocity of light in vacuum, C is the capacitance
per unit length of the microstrip shown in Fig. 1, and C, is the
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Fig. 1. Cross section of a microstrip line.

capacitance per unit length for the same structure but with
€, =1. The thickness of the strip is assumed to be zero. For
convenience, the potentials of the conductor strip and the
ground plane are assumed to be 1 V and 0 V, respectively.
The static potential function ¢(x,y) of the microstrip satisfies
Poisson’s equation:

p(x)

Vo(x,y) =~ @

and the boundary conditions on the surface of the dielectric
material as well as the conductor. Here p(x) represents the
charge density distribution on the surface of the metal strip.
Now we define the Fourier transform as

B(a,v)= [ g(x.y)edr. ©

Taking into account the boundary and continuity conditions, the
transformed potential function evaluated at the air—substrate
interface (y = k) can be shown [5], [9] to be

G(a)(a) = Ba 1) “

_ 1
G(a)= eolal{1+ e, coth(laln)} )

1— g 2lali
 eo(1+ €, Ylal(1— ke 2y (6)
and
— 1_Er

i (7

For the infinitely thin strip case, it is well known that both the
charge density and the electric field are singular at the edges of
such a strip [11]. Of the published methods for finding the
charge density distribution, the substrip approximations [3], [4]
can be expected to give reasonably good results with sufficiently
small subsections. However, this method demands large amounts
of computer time and memory. A number of different smooth
fitting functions [5]-[7] have been used to approximate these
singularities, and these greatly improve the rate and accuracy of
computing Z,. Gladwell and Coen [7] used special functions
based on the Chebyshev polynomials in approximating the charge
distribution on the strip. However, the numerical quadratures
involved in the solutions are far too complicated to use.

1659

Charge density
distribution

A

T\\H__l—’ﬁ{ X

/
Woow
2 2

Fig. 2. Charge density distribution model.

III. TuE New CuarGE Densiry MoDEL

It is assumed that the surface charge density on the conductor
strip is represented by the distribution model shown in Fig. 2. It
consists of N rectangular shaped functions, or, in mathematical
form, ‘

N
p(x)= Y K,f,(x)

(8)
n=1
Sﬂ

1 x| < .

f(xy=1{1 <3 ©)
0, otherwise

where K, K,, - -, Ky are unknowns yet to be determined. Note
that W is the strip width and 0 <sy <sy_;< - - <s, <sg; =1
The optimum values of the parameters s,,55,"+,5y Wwill be

discussed later. Since the potential on the conductor strip is
assumed to be 1 V, the line capacitance of the microstrip is

N
C=W Y K,s,=WK'S

n=1

(10)

where K=[K; K, - KyI" and S=[s; s, syl*. If we take
the Fourier transform of (8), substitute it into (4), and apply
Galerkin’s method together with Parseval’s theorem, we obtain

an

Here A is a symmetrical square matrix of dimension N. The
elements of the matrix, 4;; (=1,---,N; j=1,--+,N) are given
by

) sWy st
sin{a— | sin|a—

o 2
4,= [ G(a) "

da. (12)

Note that the above integral may be evaluated analytically as
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TABLE 1
CoMPARISON OF THE PROPOSED FORMULAS AND SUBSTRIP METHOD FOR DIFFERENT €, AND W // IN THE CHARACTERISTIC IMPEDANCE CALCULATIONS
€, 6.0 9.6 13.0 28.0
w/h PM SS PM SS PM SS PM SS
0.1 134.78 134.63 109.06 108.94 94.718 94.605 65.612 65.534
0.2 112.58 112.43 91.020 90.891 79.015 78.902 54.699 54.622
0.4 90.482 90.325 73.054 72.927 63.381 63.270 43.835 43.759
0.7 72.892 72.741 58.761 58.638 50.943 50.837 35.194 35.120
1.0 61.987 61.845 49.904 49.789 43.238 43.139 29.843 29.773
2.0 42.376 42.267 34,001 33913 29.415 29.338 20.249 20.200
4.0 26.503 26.438 21.183 21,131 18.292 18.247 12.555 12.528
10.0 12.745 12.717 10.140 10.118 8.7392 8.7197 5.9808 5.9678
PM-—oproposed method. SS—substrip method.
follows: the following equation:
s s D=B"'S. (15)
o 1_e_zah Sin CKT Sim (17
A, /0 eo(1+€,)(1— ke_zml) P o The elements of the matrix B, B,,, are calculated by the formula
o , , B, =(1-k) Yk (n+1)p',s,s,)—1(0,s,s,). (16)
— f (1_6720411)(1_'_ ke~,~ah+k,_e—4ah+ ) H ( oo ( t 1) ( 1 J)
60(1 + 6r) 0
sW sW
sin (a 12 ) sin (a —}-é— ) IV. Discussion
’ e da A computer program has been developed for the evaluation
of the line capacitance of microstrip based on (14)-(16). The
W sW characteristic impedance is then obtained from expression (1),
1 sin (a—l—) sin (cz]—) The computed impedance values for the microstrip with differ-
A = f (1— e~ 2ah) 2 2 da ent dielectric constants and w /4 ratios are shown in Table 1. It
i .
T oe(l+e) o a’ should be noted that only three rectangular shaped functions

k 0
+ 1-— —2ahN ,—2ah
E0(1+€r) /(‘J ( ¢ )e

) sWy s W
s 0{7 sin CYT

<

da+ -

Cl(3

Each integral in the above expression can be explicitly obtained
using the closed-form formulas [8] given in the Appendix.
Therefore the coefficients 4,, can be rewritten as

WZ

Ay~ e ey L s0s) - 1(0.5,5)

+k{1(2p',5,,8) = 1(Pss,8) ) + o |

2

“Faizay (1) B D)

~1(0,s,.,s1)} (13)

and p’ = 4h /W. Hence, the line capacitance is given by

C=¢y(1+¢€,)7D’S (14)

where the unknown vector D =[d, d, - - - dy1” is determined by

have been employed in these calculations. The computer time
taken is, of course, greatly dependent upon the number of terms
to be retained in the infinite series, and hence on the value of &
and the w /A ratios. For & corresponding to relative permittivi-
ties in the range 6-28 and 0.1 <w /h <10, 30 to 120 terms have
been found necessary to ensure less than 0.01% change in
capacitance upon doubling the number of terms in the series.

For purposes of comparison, the results for the same trans-
mission line calculated by the substrip method [3], [4] are also
included in the table. The standard substrip method can be
divided into two parts. The first is the formulation of a suitable
Green’s function, the second is the solution of the integral
equation by writing it in the form of matrix equation and
carrying out the matrix inversion numerically. For the substrip
method used here the center conductor is divided into 720
subsections. This number is chosen by increasing the number of
subsections until the resulting capacitance does not vary by
more than 0.01%.

It is quite easy to see that the proposed method (N = 3) yields
calculated impedance values with maximum error of about
0.26%. The optimum values of s, and s, used in these calcula-
tions are found by computer searching through all the possible
values of s, and s;. The goal is to minimize the calculated
impedance error with respect to the results obtained by the
substrip method given in Table I. The optimum values of s, and
s3 are found to be 0.985 and 0.812 respectively. It should be
noted that in this case there are only six summations to be
evaluated; therefore substantial reductions in the computational
storage and time requirements are obtained with these formu-
las. Clearly, it is possible to achieve higher accuracy in the
computed impedance values by increasing the number of basis
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Fig. 3. Covered microstrip line.

functions in (8). For example, we observed that with N =10 the
maximum impedance error can be reduced to about 0.06%.

V. Conbuctor STRIP OF FINITE THICKNESS

The previous analysis of microstrip is based on the assump-
tion that the strip is of zero thickness. The above formulas may
be modified to include the effect of finite strip thickness, say t.
Consider two layers of charge situated at y=#% and y=h +1¢.
Using the same approximations adopted by Yamashita and
Mittra [9], the modified expression for G(«) is

1— e—2|a|h
2 e(l+e)lal(l— ke ety

(17)

The new formula for B;; can be shown to be

1 fve)
B,;= 3 {(1— k) };Ok"l((n +1)p’,sl,s])— I(O,sl,s,)

il 2t 2t
+(1-k) ) k"[((n+1)p’+w,si,s )—I(W,si,s])}. (18)

n=0

VI. CovERED MICROSTRIP

The cross section of a covered microstrip line is shown in Fig.
3. It consists of a conducting strip of zero thickness placed on a
dielectric substrate between two parallel ground planes. As b
approaches infinity, the open microstrip is obtained. If we
consider the solution of the microstrip problem in the quasi-TEM
conditions, the function G{a) can be shown [10] as follows:

1
Gla)= eolal{coth (lalb) + €, coth (lalh)} "
=__L__ i C {642[(;11+n3)h+(n2+n3)h]la\
eo(1+¢,)lal n=0 !
— o~ Ayt Db+ (ny+naYhllal | p—2A(n +as+ Db +(ny+n5+ Dhljal
— A0 b s D) (20)
where

!

" n=ny+n,+n;.

= (-1 ”1kn1+n2,
nylng !n3!( )

Note that the summation in (20) is to be performed for all

combinations of (n,,7n,,n,) that give n=0,1,2,--- (e.g. for

n = 2 there are six combinations of n,,n,,n;). Using expression

(20), the formulas for the computation of the characteristic
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impedance of a covered microstrip line can be derived easily
based on the procedures described in the previous sections.

VII. CONCLUSIONS

A new method for the computation of the characteristic
impedance of microstrip has been presented. It has been shown
that it is possible to calculate the value of Z; to a remarkably
close approximation using the formulas derived.

APPENDIX

w dx
[ (1=e7%)e P sin (ax)sin (bx) —
Y0 X

=I((n+1)p,a,b)y—I(np,a,b) (Al)

bp - 2ap
— tan —
b,

ap 2bp
I(p,a,b) = —Z—tan_1 (—) +

Py
~Zin(p)+Lin(p) (A2)
where
pi=p*+(a+b)a-b)
py=p*—(a+b)(a—b)
p3=pz+(a~§-b)2
pe=p?+(a—b)’
ps=p>—(a+by’

Pe=Dp" —(a¥b)2‘
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